Startseite » Top-News »

Diamanten für hochgenaue Messsysteme

Forschungsprojekt zur Quantenmagnetometrie
Diamanten für hochgenaue Messsysteme

Die Freiburger Fraunhofer-Institute IAF, IPM und IWM wollen im Leitprojekt QMag die Quantenmagnetometrie aus dem universitären Forschungsumfeld in konkrete industrielle Anwendungen überführen. Das Ziel sind unter anderem Messsysteme auf Basis von äußerst sensitiven optisch gepumpten Magnetometern für Anwendungen in der Materialprüfung und Prozessanalytik.

Am 1. April 2019 hat die Fraunhofer-Gesellschaft das Leitprojekt QMag gestartet, das bis 2024 läuft und mit insgesamt 10 Mio. Euro zu gleichen Teilen von der Fraunhofer-Gesellschaft und dem Land Baden-Württemberg gefördert wird.

Die Magnetometrie hat grundsätzlich zwei Ziele: Magnetfelder hochpräzise und auf kleinster Skala zu messen. Magnetometer werden schon lange intensiv genutzt – sei es als Kompass zum Nachweis des Erdmagnetfelds, für geologische Untersuchungen oder zur Analyse der nanostrukturierten Magnetschichten in Computer-Festplatten für die Datenspeicherung. In der wissenschaftlichen und technischen Nutzung von Magnetfeldern gab es in den letzten Jahrzehnten vielfältige Durchbrüche, allerdings stellt die Detektion kleinster Magnetfelder mit höchster Ortsauflösung bei Raumtemperatur bis heute eine große wissenschaftliche Herausforderung dar.

Die bislang verfügbaren Magnetsensoren sind für den industriellen Einsatz nur bedingt geeignet, da ihr Betrieb mit hohen Kosten und technischem Aufwand, wie etwa einer extremen Kühlung, verbunden ist. Insbesondere für den bildgebenden Nachweis der Felder, die durch wenige bewegte Elektronen hervorgerufen werden, sind die bestehenden Magnetfeldsensoren bei Raumtemperatur nicht sensitiv genug oder besitzen nicht die benötigte Ortsauflösung.

Zwei komplementäre Systeme

Das QMag-Konsortium hat sich zum Ziel gesetzt, die Quantenmagnetometrie aus dem Labor in die Anwendung zu bringen und in der Industrie nutzbar zu machen. Dafür entwickeln die Fraunhofer-Institute zwei komplementäre Magnetometer, die kleinste magnetische Felder und Ströme mit höchster räumlicher Auflösung beziehungsweise höchster magnetischer Empfindlichkeit bei Raumtemperatur messen können.
Konkret verfolgen die Projektpartner die Demonstration und Testung von zwei Systemen, die auf den gleichen physikalischen Messprinzipien und -methoden beruhen, jedoch unterschiedliche Anwendungen ansteuern: Zum einen soll ein bildgebendes Rastersonden-Quantenmagnetometer auf Basis von Stickstoff-Vakanz-Zentren (NV-Zentren) in Diamant präziseste Messungen von nanoelektronischen Schaltungen ermöglichen. Zum anderen werden Messsysteme auf Basis von höchstsensitiven optisch gepumpten Magnetometern (OPMs) für Anwendungen in der Materialprüfung und Prozessanalytik realisiert.

Nanoskalige Magnetometrie auf Basis von NV-Zentren

Ein Rastersonden-Quantenmagnetometer kann Magnetfelder mit höchster räumlicher Auflösung bei Raumtemperatur messen. Dabei werden einzelne atomare Fehlstellenkomplexe in Diamantkristallen zur Realisierung kleinstmöglicher Tastmagnete genutzt. Als zentrales Element fungiert ein NV-Zentrum in Diamant. Ein NV-Zentrum entsteht, wenn in Diamant zwei benachbarte Kohlenstoff-Atome entfernt werden und eines durch ein Stickstoffatom ersetzt wird, wodurch in die Leerstelle des anderen das überschüssige Elektron des Stickstoffatoms hineinfällt. Dieses Elektron besitzt ein magnetisches Moment, welches nach seiner Orientierung als Tastmagnet für das nachzuweisende magnetische Feld genutzt werden kann.

Im Rahmen von QMag wird in der nanoskaligen Spitze eines Messkopfs aus Diamant ein NV-Zentrum platziert. Wird diese Sensorspitze in einem Rastersondenmikroskop über eine Probe bewegt, können lokale Magnetfelder mit sehr hoher räumlicher Auflösung bildgebend dargestellt werden. So kann die Stromverteilung in nanoelektronischen Schaltungen sichtbar gemacht werden, da jeder noch so kleine elektrische Strom ein Magnetfeld erzeugt, das mit Hilfe der Quantenmagnetometer sichtbar gemacht wird.

Optisch gepumpte Magnetometer für die chemische Analytik und Materialprüfung

Das zweite in QMag verfolgte Sensorsystem nutzt die Magnetfeldabhängigkeit elektronischer Übergänge in Alkali-Atomen: Optisch gepumpte Magnetometer (OPMs) sind eine Klasse von Sensoren, die zur Messung extrem schwacher Magnetfelder eingesetzt werden. Ebenso wie NV-Zentren brauchen OPMs keine extreme Kühlung und eignen sich damit für den industriellen Einsatz. Der Schwerpunkt der Forschungsarbeiten in QMag liegt auf der Entwicklung kompletter Mess-Systeme auf der Basis verfügbarer Magnetometer-Prototypen.

In OPMs werden die Alkali-Atome in der Gasphase mit Hilfe eines zirkular polarisierten Laserstrahls so präpariert, dass ihre magnetischen Momente alle die gleiche Orientierung haben. Im zu messenden Magnetfeld erfahren die magnetischen Momente dann eine synchrone Kreiselbewegung, die über die Absorption eines Laserstrahls geeigneter Wellenlänge messbar ist. Die Messung kann mit so hoher Genauigkeit durchgeführt werden, dass sogar noch Magnetfelder bis hinunter zu Femto-Tesla detektierbar sind – etwa so klein sind die Felder, die menschliche Hirnströme beim Denken erzeugen. Dank ihrer Empfindlichkeit können OPMs auch als Detektoren für kernmagnetische Resonanzsignale (NMR) eingesetzt werden. „Aufbauend auf den verfügbaren Einzelsensor-Prototypen entwickeln wir in QMag komplette Mess-Systeme, mit denen neue Anwendungsszenarien vor allem im Bereich der Niederfeld-NMR für die chemische Analytik und für Materialuntersuchungen erschlossen werden“, erklärt Professor Karsten Buse, Institutsleiter des Fraunhofer IPM.

Ebenso sollen Demonstratoren für Schlüsselanwendungen aus der Werkstoffmechanik realisiert werden. Die magnetische Detektion mechanischer Mikrorisse ist als hoch empfindliches Werkzeug der Werkstoffcharakterisierung und Bauteilprüfung ein hoch relevantes Anwendungsfeld. „Durch ihre hohe Empfindlichkeit auch bei niedrigen Frequenzen und bei Raumtemperatur eröffnen OPM-Sensoren ganz neue Anwendungsmöglichkeiten für die Werkstoffprüfung. So können mikroskopische Werkstoffdefekte anhand von magnetischen Streufeldsignalen zerstörungsfrei gemessen werden“, sagt Professor Peter Gumbsch, Institutsleiter des Fraunhofer IWM. ■

Newsletter

Jetzt unseren Newsletter abonnieren

Quality Engineering
Titelbild QUALITY ENGINEERING Control Express 1
Ausgabe
Control Express 1.2024
LESEN
ABO
Webinare & Webcasts

Technisches Wissen aus erster Hand

Whitepaper

Whitepaper zum Thema QS


Industrie.de Infoservice
Vielen Dank für Ihre Bestellung!
Sie erhalten in Kürze eine Bestätigung per E-Mail.
Von Ihnen ausgesucht:
Weitere Informationen gewünscht?
Einfach neue Dokumente auswählen
und zuletzt Adresse eingeben.
Wie funktioniert der Industrie.de Infoservice?
Zur Hilfeseite »
Ihre Adresse:














Die Konradin Verlag Robert Kohlhammer GmbH erhebt, verarbeitet und nutzt die Daten, die der Nutzer bei der Registrierung zum Industrie.de Infoservice freiwillig zur Verfügung stellt, zum Zwecke der Erfüllung dieses Nutzungsverhältnisses. Der Nutzer erhält damit Zugang zu den Dokumenten des Industrie.de Infoservice.
AGB
datenschutz-online@konradin.de